Project	Intended	Impact statement:
	use for	
	Impact	
	statement	
Biogellics	Both	Osteoarthritis (OA), is considered one of the most disabling
		diseases in developed countries. It affects 240 million people
		globally and its prevalence is increasing. Currently, there are no
		drugs approved which treat OA progression. We present a tissue
		engineered construct, that provide a suitable environment for
		osteochondral repair. Our approach focuses on treating the illness
		itself and it is specially indicated for relative early OA stages. The
		solutions already existing, based on stratified designs, are
		susceptible of delamination presenting abrupt changes in
		properties, which give poor results and mechanical failure.
		We have developed a technology which overcomes these
		problems with very high versatility.
Biogellics	Both	Osteoarthritis (OA), is the most common form of arthritis and it is
		considered one of the most disabling diseases in developed
		countries. It affects 240 million people globally and its prevalence
		is increasing. Currently, there are no drugs approved which
		prevent, treat or even restrain OA progression. There is an
		imperative need for developing treatments that instead of
		focusing on reducing the symptoms of OA, target the illness. we
		present a tissue engineered construct, with a great potential to be
		used as scaffold and provide a suitable environment for
		osteochondral repair and regeneration, thanks to its both
		osteogenic and chondrogenic induction potential. Thus, our
		approach focuses on treating the illness itself and it is specially
		indicated for relative early OA stages, as it promotes tissue
		regeneration and cartilage formation. Cartilage is an anisotropic
		tissue that presents a heterogeneous structure. Different
		approaches have been developed to obtain scaffolds that mimic
		the osteochondral junction, such as stratified models consisting in
		a bone-like layer and a cartilage-layer kept together using, among
		others, fibrin glue. Such stratified designs are susceptible of
		delamination and present abrupt changes in physical and
		mechanical properties, which give poor results as the resulting
		scattold may lead to poor tissue quality and mechanical failure.
		Thus, we have developed a technology which allows the
		immobilization of collagen-based hydrogels onto any substrate by
		means of a polymeric coating. This technique, allows the
		modification of almost any type of substrate, conferring a high
		versatility to the technology widening its range of application